Counting Extended Irreducible Goppa Codes

نویسندگان

  • Kondwani Magamba
  • John A. Ryan
چکیده

We obtain an upper bound on the number of extended irreducible q-ary Goppa codes of degree r and length q + 1, where q = p and n and r > 2 are prime numbers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interesting Examples on Maximal Irreducible Goppa Codes

In this paper a full categorization of irreducible classical Goppa codes of degree 4 and length 9 is given. It is an interesting example in the context of find the number of permutation non-equivalent classical irreducible maximal Goppa codes having fixed parameters q, n and r using group theory techniques.

متن کامل

List Decoding for Binary Goppa Codes

This paper presents a list-decoding algorithm for classical irreducible binary Goppa codes. The algorithm corrects, in polynomial time, approximately n− p n(n− 2t− 2) errors in a length-n classical irreducible degree-t binary Goppa code. Compared to the best previous polynomialtime list-decoding algorithms for the same codes, the new algorithm corrects approximately t/2n extra errors.

متن کامل

Enumeration of inequivalent irreducible Goppa codes

We consider irreducible Goppa codes over Fq of length q n defined by polynomials of degree r where q is a prime power and n, r are arbitrary positive integers. We obtain an upper bound on the number of such codes.

متن کامل

Permutation equivalent maximal irreducible Goppa codes

We consider the problem of finding the number of permutation nonequivalent classical irreducible maximal Goppa codes having fixed parameters q, n and r from a group theory point of view.

متن کامل

Generating Goppa Codes

Once quantum computers become operational all current public key crypto systems, PKCSs become obsolete. Fortunately, there are alternative quantum computer robust methods based on coding, on hashing, on multivariate polynomials, on lattices etc. One such candidate is the McEliece PKCS which is based on error correcting codes, e.g. Goppa codes. Hence, in order to implement the McEliece PKCS one ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018